Extensions 1→N→G→Q→1 with N=C25 and Q=S3

Direct product G=N×Q with N=C25 and Q=S3
dρLabelID
S3×C2596S3xC2^5192,1542

Semidirect products G=N:Q with N=C25 and Q=S3
extensionφ:Q→Aut NdρLabelID
C251S3 = C2×A4⋊D4φ: S3/C1S3 ⊆ Aut C2524C2^5:1S3192,1488
C252S3 = C23×S4φ: S3/C1S3 ⊆ Aut C2524C2^5:2S3192,1537
C253S3 = C2×C22⋊S4φ: S3/C1S3 ⊆ Aut C25126+C2^5:3S3192,1538
C254S3 = C2×C244S3φ: S3/C3C2 ⊆ Aut C2548C2^5:4S3192,1399
C255S3 = C23×C3⋊D4φ: S3/C3C2 ⊆ Aut C2596C2^5:5S3192,1529

Non-split extensions G=N.Q with N=C25 and Q=S3
extensionφ:Q→Aut NdρLabelID
C25.1S3 = C25.S3φ: S3/C1S3 ⊆ Aut C2524C2^5.1S3192,991
C25.2S3 = C22×A4⋊C4φ: S3/C1S3 ⊆ Aut C2548C2^5.2S3192,1487
C25.3S3 = C244Dic3φ: S3/C1S3 ⊆ Aut C25126+C2^5.3S3192,1495
C25.4S3 = C25.4S3φ: S3/C3C2 ⊆ Aut C2548C2^5.4S3192,806
C25.5S3 = C22×C6.D4φ: S3/C3C2 ⊆ Aut C2596C2^5.5S3192,1398
C25.6S3 = Dic3×C24central extension (φ=1)192C2^5.6S3192,1528

׿
×
𝔽